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Abstract

In this present dissertation, we introduce JS-contraction in b-metric spaces. JS-

contraction played an important role in the extension and generalization of Ba-

nach contraction principle. We have extended the notion of JS-contraction in

generalized b-metric spaces and establish and prove fixed point results for such

contraction in the setting of generalized b-metric spaces. We introduce a new fam-

ily for modified JS-contraction and prove fixed point results. Furthermore, we

propose generalized modified JS-contraction in b-metric spaces and establish and

prove fixed point result for such contraction in the framework of complete b-metric

spaces. All our results are extensions and generalization of various results in the

literature of fixed point theorems.
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Chapter 1

Introduction

Mathematics has great significance in scientific knowledge which has several appli-

cations for humanity and in every field of life. Mathematics is further divided into

various branches which have their own significance according to their implemen-

tation. Functional analysis is one of foremost branch of mathematics which has

substantial uses in different fields. It is widely used in finding solutions of linear

and non-linear partial differential equations. It is widely applicable in numerical

analysis such as finding solutions of linear and non-linear partial differential equa-

tion, error estimation of polynomial, interpolation and finite difference method.

Functional analysis accomplishes the beauty of combination of geometry and anal-

ysis. The valuable concept of fixed point theory in functional analysis has great

importance because of its use in various fields of sciences which enhances the

significance of functional analysis such as mathematical economics, game theory,

optimization theory, approximation theory and in variational inequalities etc.

Firstly, fixed point theory was considered as entirely pure analytical theory but

later on it was divided into different branches which are metric, discrete and topo-

logical fixed point theory. One of the most valuable theorem in fixed point theory

is fixed point theorem “The Banach Contraction principle” which has significant

consequences in metric fixed point theory. This principle states that

“On a complete metric space a contraction mapping has a unique fixed point.”

This is a widely known principle which is an essential tool in the development of

1



Introduction 2

nonlinear analysis in general and metric fixed point theory. It was first appeared

in 1922, in an explicit form in Banach’s [7] thesis where solution for an integral

equation was obtained by using this theorem. Therefore according to its signifi-

cance and convenience extensions of the Banach contraction principle have been

established either by generalizing the domain of the mapping or by extending the

contractive condition on the mapping.

Bakhtin [6] first introduced the concept of b-metric space, then implemented by

Czerwick [16] in 1974, Ekeland proposed the variational principle in b-metric space

and fixed point theory is one of the application of Elceland’s variational principle.

It used as the main tool in the proof of the fixed point theorem in complete metric

space. The use of different aspects of b-metric space in literature is obvious. Many

author’s research are found on b-metric space in the field of fixed point theory.

In 2000, Branciari [9] proposed the new concept of metric space this refined metric

is known as generalized metric space as well as rectangular metric space, in gener-

alized metric spaces the triangular inequality is substituted by the the inequality

d(x, z) ≤ d(x, r) + d(r, s) + d(s, z) for all pairwise unique points x, z, r, s ∈ X.

Many fixed theorems are proved by many author’s in generalized metric space by

taking different contractions mapping. [[5], [15], [18], [17]].

In last few year the “Banach contraction principle” has been generalized in many

ways by changing the nature of contraction mapping, but we will discuss only

those which we used in our thesis work.

In 2013, Jeli and Samet [22] proposed a new type of contraction named as JS-

contraction and prove Banach contraction principle for such contraction in the

setting of generalized b-metric space. In 2015 Hussain et al. [20] modified JS-

contraction and prove fixed point result for such contraction. In 2016, Ahmad et

al. [3] prove common fixed point results for a pair of self mapping in the setup of

complete metric space by using generalized modified JS-contraction.

In this dissertation, we review the paper of Jleli and Samet [22], Hussain et al.

[20] and Ahmad et al [3]. We have extended the result of Jleli and Samet [22] by

changing generalized metric space into generalized b-metric space. Further more

we have extended the results of Hussain et al.[20] and Ahmad et al.[3] by replacing
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metric space into b-metric space.

The thesis is organized as follows.

• In Chapter 2, we focused on definition with examples and review of papers.

• In Chapter 3, we have extended and explained briefly the results of Jleli and

Samat [22].

• In Chapter 4, deal with an extension of results proved by Hussain et al. [20].

• In Chapter 5, a brief conclusion of an extension work of Ahmad et al. [3] is

given and ends with the conclusion.



Chapter 2

Preliminaries

This chapter is divided into four section. The first section includes, metric space

and rectangular metric space with some examples. The second section is devoted

to the notions of b-metric space, rectangular b-metric space and some related stuff.

In the third and fourth section our aim is to review JS-contraction and modified

JS-contraction which were defined by Jleli and Samet and modified by Hussain

et al. respectively. We have also reviewed the results of fixed point problem for

JS-contraction and modified Js-contraction.

2.1 Metric Space and Generalized Metric Space

In this section, we recall the notion of a metric which is nonempty set X equipped

with a distance function d satisfying some properties. Throughout R mean to the

set of real number.

Definition 2.1.1. [26] (Metric Space)

“A metric space (X, d) consists of a non-empty set X and a function d : X×X → R

such that:

(i) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y for all x, y ∈ X (Positivity)

(ii) d(x, y) = d(y, x) for all x, y ∈ X (Symmetry)

4
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(iii) d(x, y) ≤ d(x, z) + d(z, x) for all x, y ∈ X (Triangle inequality)

A function d satisfying conditions (i)− (iii), is called a metric on X.”

Example 2.1.2. Let X = R and define d∗ : X ×X → R as

d∗(t, u) = |t− u|

then (R, d∗) be a metric space and d is called Usual metric on R.

Example 2.1.3. Let X = R2, define d∗ : R2 × R2 → R

d∗(t, u) =
√

(ξ1 − η1)2 + (ξ2 − η2)2.

where t = (ξ1, ξ2), u = (η1, η2) ∈ R2

Then d∗ be a metric on R and (R2, d∗) is a Euclidean metric space.

Example 2.1.4. Let X consists of all bounded sequences of complex numbers

i.e,

t = {ξi}i∈N or t = (ξ1, ξ2, . . .) and |ξi| ≤ ct ∀ i ∈ N

Define d∗ : X ×X → R by

d∗(t, u) = sup
i∈N
|ξi − ηi|

Where t, u ∈ X, t = {ξi}, u = {ηi} and the sup denote the supremum (least

upper bound).

Example 2.1.5. “Let X = C[a, b] be the set of all real-valued continuous

function defined on a close interval [a, b]. The function d : X ×X → R given by

d(x, y) = max
t∈[a,b]

|x(t)− y(t)| x, y ∈ C[a, b]

is a metric on X and (X, d) is a metric space denoted by C[a, b].”
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Example 2.1.6. [26] “Let X = B(A) be the set of all bounded functions

defined on the set A then d : B(A)×B(A)→ R given by

d(x, y) = sup
t∈A
|x(t)− y(t)|

is a metric on B(A). For a set A = [a, b] ⊆ R; B(A) is denoted as B[a, b].”

Example 2.1.7. [10] “The space of real or complex number sequences x =

{ξn}∞n=1 such that for some p ≥ 1 the infinite series
∑∞

n=1 |ξn|p converges. The

space is denoted by `p.

The metric d : `p × `p → R is given by

d(x, y) =

(
∞∑
n=1

|ξn − ηn|p
)1/p

x, y ∈ `p

Where y = {ηn} and
∑
|ηn|p <∞.

For p = 2, we get the Hilbert sequence space `2 with metric given by

d(x, y) =

√√√√ ∞∑
n=1

|ξn − ηn|2.”

In 2000,“ Branciari [9] introduced the idea of rectangular metric space by changing

the sum of right hand side of the triangular inequality in metric space by the three

terms expression.”

Definition 2.1.8. [26](Rectangular Metric Space)

“Let X be a nonempty set and the mapping d : X ×X → [0,∞) satisfies:

(M1) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(M2) d(x, y) = d(y, x) for all x, y ∈ X;

(M3) d(x, y) ≤ d(x, r) + d(u, v) + d(s, y) for all x, y ∈ X and all distinct point

u, v ∈ X \ {x, y}

Then d is called rectangular metric on X and (X, d) is called a rectangular metric

space (in short RMS).”
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Example 2.1.9. [29] “Let (X, ρ) be a bounded metric space and let M be a

real number satisfying

sup{ρ(x, y) : x, y ∈ X}

Let A and B be subset of X with X = A ∪B and A ∩B = φ

Define a function d from X ×X into [0,∞) by
d(x, y) = 0

d(x, y) = d(y, x) = ρ(x, y) if x ∈ A, y ∈ B

d(x, y) = M otherwise

Then (X, d) is a generalized metric space.”

2.2 b-Metric Space and Rectangular b-Metric

Space

Definition 2.2.1. (b-Metric Space)

“Let X be a non-empty set and a mapping d : X ×X → [0,∞) satisfies:

(bM1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(bM2) d(x, y) = d(y, x) for all x, y ∈ X;

(bM3) there exist a real number b ≥ 1 such that

d(x, y) ≤ b[d(x, z) + d(z, y)] for all x, y, z ∈ X

Then d is called a b-metric on X and (X, d) is called a b-metric space (in short

bMS) with co-efficient s.”

Note that every metric space is b-metric space (with coefficient s = 1).
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Example 2.2.2. “Let X = {0, 1, 2} , and let

d(x, y) =

 2, if x = y = 0
1

2
, if otherwise.

Then (X, d) is a b-metric with coefficient b = 2.”

Example 2.2.3. [10]“ Let `p, (0 < p < 1)

`p = {(ξn) ⊂ R :
∞∑
n=1

|ξn|p <∞},

together with the function d : `p × `p → R

where

d(x, y) =

{
∞∑
n=1

|ξn − ηn|p
}1/p

where x = ξn , y = ηn ∈ `p is b-metric space. By an elementary calculation we

obtain that

d(x, z) = 21/p[d(x, y) + d(y, z)]

Example 2.2.4. The space `p , (0 < p < 1) of all real functions x(t) , t ∈ [0, 1]

such that ∫ 1

0

|ξ(t)|p dx <∞

is a b-metric space if we take

d(x, y) =

(∫ 1

0

|ξ(t)− η(t)|p dt
)1/p

for each x, y ∈ `p.”

Definition 2.2.5. Let (X, d) be a metric space or b-metric space, {xn} be a

sequence in X and x ∈ X. Then

1. Convergent Sequence

“The sequence {xn} is said to be convergent in (X, d) and convergent to x,

if for every ε > 0 there exist n0 ∈ N such that d(xn, x) < ε for all n > n0

and this fact is represented by lim
n→∞

xn = x or xn → x as n→∞.”
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2. Cauchy Sequence

“ The sequence {xn} is said to be Cauchy sequence if for every ε > 0 there

exist n0 ∈ N such that for each n,m ≥ n0 we have d(xn, xp) < ε.”

3. Completeness

“(X, d) is said to be complete b-metric space if every Cauchy sequence in X

converges to some x ∈ X.”

Definition 2.2.6. [19] (Generalized b-Metric Space)

“Let X be a non-empty set and a mapping d : X ×X → [0,∞) satisfies:

(bM1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(bM2) d(x, y) = d(y, x) for all x, y ∈ X;

(bM3) there exist a real number s ≥ 1 such that

d(x, y) ≤ b[d(x, u) + d(u, v) + d(v, y)]

for all u, v ∈ X and all distinct points u, v ∈ X \ {x, y}.

Then d is called a rectangular b-metric on X and (X, d) is called a b-metric space

(in short GbMS) with co-efficient b.

Note that every metric space is rectangular metric space and every generalized

metric space is a rectangular b-metric space (with coefficient b = 1). However the

converse of the above implication is not necessarily true.”

Example 2.2.7. [19] “Let X = N, define d : X ×X → X such that d(x, y) =

d(y, x) for all x, y ∈ X

d(x, y) =



0, if x = y

10α, if x = 1, y = 2

α, if x ∈ {1, 2} and y ∈ {3}

2α, if x ∈ {1, 2, 3} and y ∈ {4}

3α, if x or y 6∈ {1, 2, 3, 4} and x 6= y
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where α > 0 is a constant. Then (X, d) is a generalized b-metric space with

coefficient b = 2 > 1.”

Example 2.2.8. [19] “Let X = N, define d : X ×X → X by

d(x, y) =


0, if x = y

4α, if x, y ∈ {1, 2} and x 6= y

α, if x or y 6∈ {1, 2} and x 6= y

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with

coefficient b = 4
3
> 1, but (X, d) is not a rectangular metric space, as d(1, 2) =

4α > 3α = d(1, 3) + d(3, 4) + d(4, 2).”

The limit in the b-metric space is not unique, so every convergent sequence in

b-metric space is not Cauchy. It is clear from the Example 2.2.2.

In Example 2.2.2, let xn = 2 for each n = 1, 2, ..., then is clear that lim
n→+∞

d(xn, 2) =

1/2 and lim
n→+∞

d(xn, 0) = 2, hence in b-metric limit is not necessarily unique.

Definition 2.2.9. [19] Let (X, d) be a generalized metric space or generalized

b-metric space, {xn} be a sequence in X and x ∈ X. Then

1. Convergent Sequence

“The sequence {xn} is said to be convergent in (X, d) and converges to x, if

for every ε > 0 there exist n0 ∈ N such that d(xn, x) < ε for all n > n0 or

this fact is represented by lim
n→∞

xn = x or xn → x as n→∞.”

2. Cauchy Sequence

“The sequence {xn} is said to be Cauchy sequence in (X, d) if for every

ε > 0 there exist n0 ∈ N such that d(xn, xn+p) < ε for all n > n0, p > 0 or

equivalently, lim
n→∞

d(xn, xn+m) = 0 for all p > 0.”

3. Completeness

“(X, d) is said to be complete generalized b-metric space if every Cauchy

sequence in X converges to some x ∈ X.”
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Note that, limit of a sequence in generalized b-metric space is not necessarily

unique. It is clear from the following example.

Example 2.2.10. [19]“ Let X = A∪B, where A =

{
1

n
: n ∈ N

}
and B is the

set of all positive integers. Define d : X ×X → [0,∞) such that d(x, y) = d(y, x)

for all x, y ∈ X and

d(x, y) =



0, if x = y;

2α, if x, y ∈ A;

α

2n
, if x ∈ A and y ∈ {2, 3}

α, otherwise

where α > 0 is a constant. Then (X, d) is generalized b-metric space with coeffi-

cient b = 2 > 1.” The sequence
{

1
n

}
converges to 2 and 3 in generalized b-metric

and so limit is not unique.

2.3 A new Generalization of BCP in Generalized

Metric Space

We will present here the review of JS-contraction and fixed point results which

were established and proved by Jleli and Samet [22], for such contraction in the

setup of complete metric space. We have reviewed the results of Jleli and Samet.

2.3.1 JS-contraction

In 2013, Jleli and Samet [22] gave the idea of JS-contraction and prove fixed point

results by using such contraction in the setup of complete metric space.

“We denote by Θ the set of functions φ : (0,∞)→ (1,∞) satisfying the following

conditions.[22]

(θ) θ is non-decreasing.
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(θ) for each sequence {tn} ⊆ R+, lim
n→+∞

φ(tn) = 1if and only if lim
n→∞

(tn) = 0.

(θ) there exist r ∈ (0, 1) and ` ∈ (0,∞] such that lim
α→0+

θ(t)− 1

tr
= `.”

Definition 2.3.1. “ Let (X, d) be a rectangular metric space and a given self

mapping V : X → X is said to a JS-contraction if there exist a function θ ∈ Θ

and for any constant k ∈ (0, 1) such that

d(Tx, Ty) 6= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]α

for every x, y ∈ X.”

Theorem 2.3.2. [22] “Let (X, d) be a complete g.m.s metric space and T : X → X

be a given map. Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

for all x, y ∈ X, d(Tx, Ty) 6= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k (2.1)

Then T has only one fixed point.”

Proof. See Theorem 3.1.8

Since a metric space is rectangular metric space, from Theorem 2.3.2. the following

result has been concluded.

Corollary 2.3.3. [22]“ Let (X, d) be a complete metric space and T : X → X

be a given self map. Assume that there exist Θ ∈ θ and k ∈ (0, 1) such that

for all x, y ∈ X, d(Tx, Ty) 6= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k (2.2)

Then T has only one fixed point.”

Let f : X → X be a self mapping and (X, d∗) be metric space. Notice that

from Corollary 2.3.3, the Banach Contraction contraction principle follows directly.

Certainly if T is a Banach Contraction then for any µ ∈ (0, 1) such that

d∗(fx, fy) ≤ µd∗(x, y), ∀x, y ∈ X
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This implies that

ed∗(fx,fy) ≤
[
ed∗(x,y)

]µ
, ∀x, y ∈ X

It is clear that the function φ : (0,∞) → (1,∞) defined by φ(u) = e
√
u belongs

to the family Φ. The Corollary 2.3.3 shows the existence and uniqueness. it is

also shown from example that the Corollary 2.3.3, be a real “generalization of the

Banach contraction principle”.

Example 2.3.4. Let us define the set Y

Y = {κ ∈ N}

where

κm =
m(m+ 1)

2
, for every m ∈ N

The metric d : Y × Y → Y is defined by d(u, t) = |u − t| for every u, t ∈ Y . We

can show easily that (Y, d) is a complete metric space. Let V : Y → Y be the self

mapping defined as follows

V κ1 = κ1, V κm = κm−1, for all m ≥ 2

We can check easily that Banach contraction does not hold.

lim
m→∞

d(V κm, V κ1)

d(κm, κ1)
= 1

Now, take a function ψ : (0,∞) → (1,∞) defined by ψ(u) = e
√
ueu . Then it can

be shown easily that φ ∈ Φ. Now, our aim is show V fulfill the condition of the

result 2.3.3, i.e

d(V κm, V κn) 6= 0 ⇒ e
√
d(V κm,V κn)ed(V κm,V κn) ≤ eα

√
d(κm,τn)ed(κn,κn)
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for any α ∈ (0, 1).

From the above inequality, implies that

d(V κm, V κn)ed(V κm,V κn) ≤ α2d(κm, κn)ed(κm,κn)

So, we have to check that

d(V κm, V κn) 6= 0 ⇒ d(V κm, V κn)ed(V κm,V κn)−d(κm,κn)

d(κm, κn)
≤ α2 (2.3)

for any α ∈ (0, 1). Let us considering two cases.

Case i. m = 1 and n > 2. Check for this case, we have

d(V κm, V κn)ed(V κm,V κn)−d(κm,κn)

d(κm, κn)
=
n2 − n− 2

n2 + n− 2
e(n

2−2)(−n) ≤ e−1

Case ii. n > m > 1. Now, check for this case, we have

d(V κm, V κn)ed(V κm,V κn)−d(κm,κn)

d(κm, κn)
=
n+m− 1

n+ n+ 1
e(m

2−n2)(n−m) ≤ e−1

Hence, the inequality (2.3) is fulfilled for α = e−1/2. Corollary 2.3.3 implies that

V has at most one fixed point. Observe that for this example κ1 is the fixed point

of V .

2.4 Fixed point Results and Modified JS-contraction

In this section we will review the generalization of Ciric, Chatterjea and Reich

contraction. Accordent with [22], Hussain et al. [20] introduced and proved fixed

point theorem for self mapping in the setup of complete metric spaces. We present

here some results of Hussain.
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2.4.1 φ-Contractive Condition

The family Φ of the functions φ which are defined under some conditions. Hussain

et al. [20] modified and extended the conditions of the functions φ : [0,∞) →

[1,∞) which are defined as follows.

(ψ
′
1) “ψ is non-decreasing and ψ(t) = 1 ⇔ t = 0;

(ψ
′
4) ψ(a+ b) ≤ ψ(a)ψ(b) for all a, b > 0.”

The above two conditions are known as φ-contractive conditions.The condition

(ψ
′
1 − ψ4) satisfying by all functions φ : [0,∞) → [1,∞) is denoted by is denoted

Ψ. The following fixed point theorem were established and proved by Hussain et

al. [20] for φ-contraction in the setup of complete metric space.

Theorem 2.4.1. Let (X, d) be a complete metric space, a f : X → X be a

given self mapping. Assume that there exist “a function ψ ∈ Ψ and positive real

number k1, k2, k3 and k4 with 0 ≤ k1 + k2 + k3 + 2k4 < 1 such that

ψ(db(fx, fy)) (2.4)

≤[ψ(d(x, y))]k1 [ψ(d(x, fx))]k2 [ψ(d(y, fy))]k3 [ψ(d(x, fy) + d(y, fx))]k4

for each x, y ∈ X”, then f has only one fixed point.

Proof. Taking b = 1 in Theorem 4.1.2, the proof follows immediately.

Definition 2.4.2. “ Let (X, d) be a metric space. A mapping f : X → X is

said to be:

(i) A C-contraction(see[13]) if there exist α ∈ (0, 1
2
) such that for all x, y ∈ X

the following inequality holds:

d(fx, fy) ≤ α[d(x, fy) + d(y, fx)];
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(ii) A K-contraction([24]) if there exist α ∈ (0, 1
2
) such that for all x, y ∈ X the

following inequality holds:

d(fx, fy) ≤ α[d(x, fx) + d(y, fy)];

(iii) A Reich contraction([27]) iff for all x, y ∈ X there exist nonnegative numbers

q, r, s such that q + r + s+ 2t < 1 and

d(fx, fy) ≤ qd(x, y) + rd(x, fx) + sd(y, fy);

(iv) A Ciric(see[11]) contraction if and only if for all x, y ∈ X there exist non-

negative numbers q + r + s and t such that q + r + t3 + s+ 2t < 1 and

d(fx, fy) ≤ qd(x, y) + rd(x, fx) + sd(x, fx) + td(x, fy) + d(y, fx)].”

Theorem 2.4.3. [20]“ Let (X, d) be a complete metric space and f : Y → Y be

a continuous mapping. Suppose that there exist a positive real number k1, k2, k3, k4

with 0 ≤ k1 + k2 + k3 + 2k4 < 1, such that

√
d(fx, fy)

≤ k1
√
d(x, y) + k2

√
d(x, fx) + k3

√
d(y, fy) + k4

√
(d(x, fy) + d(y, fx)) (2.5)

for all x, y ∈ X, then f has unique fixed point.”

Proof. Taking ψb(t) = e
√
t in Theorem 2.4.1 we get the Ciric [11] result.
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Remark 2.4.4. [20] Observe that the following result follows from the condition

(2.5).

“d(fx, fy) ≤ k1
2d(x, y) + k2

2d(x, fx) + k3
2d(y, fy) + k4

2[d(x, fy) + d(y, fx)]

+ 2k1k2
√
d(x, y)d(x, fx) + 2k1k3

√
d(x, y)d(y, V y)

+ 2k1k4
√
d(x, y)[d(x, fy) + d(y, fx)] + 2k2k3

√
d(y, fx)d(y, fy)

+ 2k2k4
√
d(x, fx)[d(x, fy) + d(y, fx)]

+ 2k3k4
√
d(y, fy)[d(x, fy) + d(y, fx)].”

Further, observe on the Remark 2.4.4, taking k1 = k4 = 0 in Theorem 2.4.3 follows

the Kannan [24] result.

Theorem 2.4.5. [20] “Let (X, d) be a complete metric space and f : X → X

be a given self mapping. Suppose that that there exist positive real numbers k2, k3,

with 0 < k2 + k3 < 1, such that

d(fx, fy) ≤ k2
2d(x, fx) + k3

2d(y, fy) + 2k2k3
√
d(x, fx)d(y, fy) (2.6)

for all x, y ∈ X. Then f has only one fixed point.”

On another way, by taking k1 = k2 = t3 = 0 in Theorem 2.4.3 follows the following

Chetterjea[13] result.

Theorem 2.4.6. [20]“ Let (X, d) be a complete metric space and f : X → X

be a continuous mapping. Suppose taht there exist k4 ∈ [0,
1

2
) such that

db(fx, fy) ≤ k4
2[d(x, fy) + d(y, fx)]

for all x, y ∈ X. Then f has only one fixed point.”

The following extension of Reich result follows from Theorem 2.4.3 By taking

k4 = 0.

Theorem 2.4.7. [20]“ Let (X, d) be a complete metric space and f : X → X

be a continuous mapping. Suppose that there exist positive real number k1, k2, k3,
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with 0 < k1 + k2 + k3 < 1, such that

d(fx, fy) ≤ k1
2d(x, y) + k2

2d(x, fx) + k3
2db(y, fy)

+ 2k1k2
√
d(x, y)d(x, fx) + 2k1k3

√
d(x, y)d(y, fy)

+ 2k2k3
√
d(x, fx)d(y, fy)

for all x, y ∈ X. Then f has only unique fixed point.”

Theorem 2.4.8. [20]“ Let (X, d) be a complete metric space and f : X → X

be a continuous mapping. Suppose that there exist positive real number k1, k2, k3, k4

with 0 < k1 + k2 + k3 + 2k4 < 1, such that

n
√
d(fx, fy) ≤ k1

n
√
d(x, y)+k2

n
√
d(x, fx)+k3

n
√
d(y, fy)+k4

n
√

(d(x, fy) + d(y, fx))

(2.7)

for all x, y ∈ X, then f has only one fixed point.”

Proof. Taking ψ(u) = e
n√u in the Theorem 2.4.3, the proof follows immediately.



Chapter 3

A New Generalization of BCP in

GbMS

In this chapter we establish and prove Banach contraction principle using JS-

contraction in the setup of complete rectangular b-metric spaces. Our aim is to

extend the results of Jleli and Samet [22] by changing rectangular metric spaces

into rectangular b-metric spaces. An example is also given which illustrates our

result.

3.1 JS-Contractions

We will define JS-contraction in rectangular b-metric spaces and then establish and

prove fixed point theorem for such contraction in the setup of complete rectangular

b-metric spaces.

Ler Φ be the family of all functions φ : (0,∞) → (1,∞) satisfying the following

assertions:

(φ1) φ is non-decreasing.

(φ2) For each sequence {βn} ⊆ R+, lim
n→∞

φ(βn) = 1 ⇔ lim
n→∞

(βn) = 0.

19
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(φ3) There exist 0 < h < 1 and ` ∈ (0,∞] such that lim
β→0

φ(β)− 1

βh
= `.

Example 3.1.1. The following are some functions from the family Φ.

(i) φ : (0,∞)→ (1,∞) defined by φ(u) = e
√
u.

(ii) φ : (0,∞)→ (1,∞) defined by φ(u) = e
√
ueu .

(iii) φ : (0,∞)→ (1,∞) defined by φ(u) = eu.

(iv) φ : (0,∞)→ (1,∞) defined by φ(u) = coshu.

(v) φ : (0,∞)→ (1,∞) defined by φ(u) = 1 + ln(1 + u).

(vi) φ : (0,∞)→ (1,∞) defined by φ(u) = eue
u
.

Definition 3.1.2. Let V : Y → Y be a given self mapping and (Y, db) be a

rectangular b-metric with b ≥ 1, whenever there exist any constant α ∈ (0, 1) and

function φ ∈ Φ satisfying:

db(V x, V y) 6= 0 ⇒ φ(db(V x, V y)) ≤ [φ(db(x, y))]α.

∀ x, y ∈ Y , then V is called JS-contraction.

Example 3.1.3. Let d∗b : R × R → R is defined by d∗b(x, z) = (x − z)2. Then

(Y, d∗b) be a rectangular b-metric with coefficient b = 4 and V : Y → Y be a self

mapping defined by V y =
y

2
.

Assume that the function φ : (0,∞) → (1,∞) is defined by φ(u) = e
√
u. φ satis-

fying the conditions of 3.1. So, φ ∈ Φ. Our aim is to prove V is JS-contraction.

From Definition 3.1.3, we have

∀ x, z ∈ Y, d∗b(V x, V z) 6= 0 ⇒ e
√
d∗b (V x,V z) ≤ eα

√
d∗b (x,z),

for any α ∈ (0, 1). From the above inequality, we have

√
d∗b(V x, V z) ≤ α

√
d∗b(x, z)√

d∗b(V x, V z)√
d∗b(x, z)

≤ α. (3.1)
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Consider √
d∗b(V x, V z)√
d∗b(x, z)

=

√(
x
2
− z

2

)2√
(x− z)2

=

(
x
2
− z

2

)
(x− z)

=
1

2
.

This implies that the inequality 3.1 hold for α =
1

2
∈ (0, 1). Hence V is JS-

contraction.

Theorem 3.1.4. Let V : Y → Y be a given self mapping and (Y, db) be a

complete rectangular b-metric space with b ≥ 1, whenever there exist φ ∈ Φ and

for any α ∈ (0, 1) satisfying:

db(V x, V y) 6= 0 ⇒ φ(db(V x, V y)) ≤ [φ(db(x, y))]α (3.2)

∀ x, y ∈ Y , then V has only one fixed point.

Proof. Assume that y0 ∈ Y be arbitrary. Let us consider a sequence {ym} by

ym+1 = V ym for all m ≥ 0. We want to prove {ym} is Cauchy sequence. If

ym = ym+1 then ym is fixed point of V , so there is nothing to prove. So, suppose

that ym 6= ym+1 for all m ≥ 0. Setting db(ym, ym+1) = dbm and using 3.2

1 < φ(db(ym, ym+1)) = φ(db(V ym−1, V ym))

≤ [φ(db(ym−1, ym))]α

dbm ≤ dαb(m−1)

Repeating this process

dbm ≤ dα
n

b0

1 < φ(db(ym, ym+1) ≤ [φ(db(y1, y0))]
αm . (3.3)

Taking m→∞ in the above inequality and using Sandwich Theorem, we get

⇒ lim
m→∞

[φ(db(y0, y1))]
αm → 1
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since 0 < α < 1, αm → 0 as m→∞

⇒ lim
m→∞

[φ(db(ym, ym+1))]→ 1

From the condition (φ2)

lim
m→∞

db(ym, ym+1) = 0.

There exist 0 < h < 1 and ` ∈ (0,∞] from the condition (φ3) such that

lim
m→∞

φ(db(ym, ym+1))− 1

db(ym, ym+1)h
= `.

Let ` <∞. Then by definition of limit, choosing r =
`

2
there exist a non negative

integer m0 ∈ N such that m > m0∣∣∣∣φ(db(ym, ym+1))− 1

db(ym, ym+1)h
− `
∣∣∣∣ ≤ r.

−r ≤φ(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≤ r

Consider

φ(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≥ −r.

φ(db(ym, ym+1))− 1

db(ym, xm+1)h
≥ `− r.

φ(db(ym, ym+1))− 1

db(ym, ym+1)h
≥ `− `

2
= r.

Then

db(ym, ym+1)
h ≤ s[φ(db(ym, ym+1))− 1], for all m > m0

Where s =
1

r
.
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Let ` =∞. Then by definition of limit, choosing r > 0 there exist a non negative

integer m0 ∈ N such that m > m0

φ(db(ym, ym+1))− 1

db(ym, ym+1)h
≥ r.

This implies that, for all m ≥ m0

(db(ym, ym+1))
h ≤ s[φ(db(ym, ym+1))− 1].

Observe that for each case, s > 0 and m0 ∈ N such that

(db(ym, ym+1))
h ≤ s[φ(db(ym, ym+1))− 1], for all m ≥ m0.

Using (3.3) in the above inequality, we get

(db(ym, ym+1))
h ≤ s

[
[φ(db(y0, y1))]

αm − 1
]
, for all m ≥ m0. (3.4)

Since b ≥ 1 and 0 < h < 1, then bh > 0. Then for all m > m0

bhm(db(ym, ym+1))
h ≤ sbhm

[
[φ(db(y0, y1))]

αm − 1
]
. (3.5)

Taking m→∞ in the above inequality

lim
m→∞

km[φ(db(y0, y1))
αm − 1] = k lim

m→∞

[φ(db(y1, y0))
αm − 1]

1
m

= k lim
m→∞

αm ln(α) ln(φ(db(y0, y1))[φ(db(y0, y1))]
αm

−1
m2

= k lim
m→∞

−m2αm ln(α) ln(φ(db(y0, y1))[φ(db(y0, y1))]
αm

= k lim
m→∞

−m2 ln(α) ln(φ(db(y0, y1))[φ(d(y0, y1))]
αm

αm1

= k lim
n→∞

−m2

αm1
. lim
m→∞

ln(α) ln(φ(db(y0, y1))[φ(d(y0, y1))]
αm

= k.0. ln(α) ln(φ(db(y0, y1))

= 0 (where α1 =
1

α
and k = sbh).
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⇒ lim
m→∞

m[φ(db(y0, y1))
αm − 1] = 0. (3.6)

From (3.5), we have

lim
m→∞

bhm(db(ym, ym+1))
h = 0.

Then by definition of limit there exist ε > 0, choosing ε ∈ (0, 1) and there is an

m1 ∈ N such that for each m ≥ m1

∣∣bhm(db(ym, ym+1))
h − 0

∣∣ < ε

bhm(db(ym, ym+1))
h < ε

bm
1
h (db(ym, ym+1)) < ε

′
(ε1/h = ε

′
)

db(ym, ym+1) <
ε
′

bm
1
h

.

db(ym, ym+1) <
1

bm
1
h

, for all m ≥ m1. (3.7)

Replacing m with m+ 1 in (3.7), we get

db(ym+1, xm+2) <
1

b(m+ 1)
1
h

, for all m ≥ m1. (3.8)

From (3.4) (db(ym, ym+1))
h ≤ s

[
[φ(db(y0, y1))]

αm − 1
]
, for all m ≥ m0

Since b ≥ 1, 0 < h < 1 then b2h > 0. Then for all m > m0

b2hm(db(ym, ym+1))
h ≤ sb2hm

[
[φ(db(y0, y1))]

αn − 1
]
.

Again, taking m→∞ in the above inequality and using (3.6).

lim
m→∞

b2hm(db(ym, ym+1))
h = 0

Then by definition of limit there exist m1 ∈ N such that

db(ym, ym+1) <
1

b2m
1
h

, for all m ≥ m1.
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Replacing m with m+ 2 and m+ 3, we get

db(ym+2, ym+3) <
1

b2(m+ 2)
1
h

, for all m ≥ m1. (3.9)

db(ym+3, ym+4) <
1

b2(m+ 3)
1
h

, for all m ≥ m1. (3.10)

Continuing in this way, we get

db(yn+2I , yn+2I+1) <
1

bI(n+ 2I)
1
h

, for all m ≥ m1. (3.11)

Also, let us assume that y0 is not a periodic point of V . Indeed, if y0 = ym then

using (3.2), for all m ≥ 2, we have

φ(db(y0, V y0)) = φ(db(ym, V ym))

φ(db(y0, y1)) = φ(db(ym, ym+1))

db0 = dbm

db0 ≤ dα
m

b0

ln db0 ≤ αm ln db0 ≤ ln db0

which contradict to our supposition.

This implies that d0 = 0, i.e y0 = y1, and y0 is a fixed point of V . Assume that

ym 6= yn for all distinct n,m ∈ N such that m 6= n.

Again setting φ(db(ym, ym+2)) = d
′

bm.

φ(db(ym, ym+2)) ≤ [φ(V ym−1, V ym+1) ≤ [φ(db(ym−1, ym+1))]
α

d
′

m = [φ(ym−1, ym+1))]
α

d
′

bm ≤ d
′α
b(m−1).

Continuing in this way, we get

d
′

m ≤ d
′αm

0

⇒ 1 < ψ(d
′
(ym, ym+2)) ≤ [ψ(d

′
(y0, y2))]

αm .
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Taking m → ∞ on both sides of the above inequality and then using Sandwich

Theorem, we obtain

lim
m→∞

φ(d
′
(ym, ym+2)) = 1.

From the condition (φ2), we get

lim
m→∞

d
′
(ym, ym+2) = 0.

Similarly, from condition (φ3), there exist m2 ∈ N such that

d
′

b(ym, ym+2) ≤
1

bm
1
h

, for all m ≥ m2.

Replacing m with m+ 2I − 2, we have

d
′

b(ym+2I , ym+2I−2) ≤
1

bI−1m
1
h

, for all m ≥ m2. (3.12)

Let N = max{m0,m1}.

For the sequence {ym}, as db is rectangular metric space so consider db(ym, ym+q)

into two case.

Case-i:

If q > 2 is odd say q = 2I + 1, I ≥ 1, using (3.7), (3.8),. . . , (3.11) for all m > N ,

we obtain

db(ym, ym+q)

≤ b[db(ym, ym+1) + db(ym+1, ym+2) + db(ym+2, ym+2I+1)]

= b[dbm + db(m+1)] + bd(ym+2, ym+2I+1)]

≤ b[dm + db(m+1)] + b2[db(ym+2, ym+3) + db(ym+3, ym+4) + db(ym+4, ym+2L+1)]

= b[dbm + db(m+1)] + b2[db(m+2) + db(m+3)] + b2[db(ym+4, ym+2I+1)]

Continuing in this way, we obtain

db(ym, ym+2I+1)

≤ b[dbm + db(m+1)] + b2[db(m+2) + db(m+3)] + b3[db(m+4) + db(m+5)] + · · ·+ bIdb(m+2I)
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= [bdbm + b2db(m+2) + b3db(m+4) + · · ··]

+ [bdb(m+1) + b2db(m+3) + b3db(m+5) + · · · ·+bIdb(m+2I)]

=

(
b

bm
1
h

+
b2

b2(m+ 2)
1
h

+
b3

b3(m+ 4)
1
h

+ · · ·

)

+

(
b

b(m+ 1)
1
h

+
b2

b2(m+ 3)
1
h

+
b3

b3(m+ 5)
1
h

+ · · ·+ bI

bI(m+ 2I)
1
h

)

=

(
1

m
1
h

+
1

(m+ 1)
1
h

+
1

(m+ 2)
1
h

+ · · ·+ 1

(m+ 2I)
1
h

)

=
m+2I∑
j=m

1

j
1
h

≤
∞∑
j=1

1

j
1
h

.

Case-ii:

If q > 2 is even say 2I, I ≥ 2, using (3.7), (3.8), . . . and (3.12) for all m > N

db(ym, y(m+2I))

≤ b[dbm + db(m+1)] + b2[db(m+2) + db(m+3)] + b3[db(m+4) + db(m+5)] + · · ·+ bI−1d
′

b(m+2I−2)

= [bdbm + b2db(m+2) + b3db(m+3) + · · ··]

+ [bdb(m+1) + b2db(m+2) + b3db(m+3) + · · · ·+bI−1d′b(m+2I−2)]

=

(
b

bm
1
h

+
b2

b2(m+ 2)
1
h

+
b3

b3(m+ 4)
1
k

+ · · ·

)

+

(
b

b(m+ 1)
1
h

+
b2

b2(m+ 3)
1
h

+
b3

b3(m+ 5)
1
h

+ · · ·+ bI−1

bI−1(m+ 2I − 2)
1
h

)

=

(
1

m
1
h

+
1

(m+ 1)
1
h

+
1

(m+ 2)
1
h

+ · · ·+ 1

(m+ 2I − 2)
1
h

)

=
m+2I−2∑
j=n

1

j
1
h

≤
∞∑
j=1

1

j
1
h

.
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Thus, combining all these cases, we have

db(ym, ym+q) ≤
∞∑
j=1

1

j
1
h

, for all m ≥ N, q ∈ N

Since 0 < h < 1, then
∑∞

j=1
1

j
1
h

converges.

This implies that lim
m→∞

db(xm, xm+q)→ 0 for all q > 0. Thus we proved that {ym}

is a Cauchy sequence in Y . The completeness of Y make insure there exist y0 ∈ Y

such that ym → y0 as m → ∞. First we show that y0 is a fixed point of V .

Contrary suppose y0 6= V y0.

Then

1 < φ(db(ym, V y0)) = φ(db(V ym−1, V y0))

≤ [φ(db(ym−1, y0))]
α

Taking m→∞ in the above inequality, we get

1 < φ(db(y0, V y0)) ≤ 1

which contradict to our supposition. Thus x0 is the fixed point of V .

For uniqueness. Suppose there exist another fixed point x0 of V different from y0

that is x0 = V x0.

Then

1 < φ(db(y0, x0)) = φ(db(V y0, V x0))

≤ [φ(db(y0, x0))]
α

< φ(db(y0, x0))

⇒ 1 < φ(db(y0, x0)) < φ(db(y0, x0))

which contradict to our supposition that y0 6= x0 . Thus y0 = x0. Thus V has

only one fixed point, which ends the proof.

Definition 3.1.5. Let V : Y → Y given self mapping and (Y, db) be a b-metric
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with b ≥ 1, whenever there exist a function φ ∈ Φ and for any constant α ∈ (0, 1)

satisfying:

db(V x, V y) 6= 0 ⇒ φ(db(V x, V y)) ≤ [φ(db(x, y))]α

∀ x, y ∈ Y , then V is called JS-contraction.

Since a b-metric space with coefficient b is a rectangular b-metric space with coef-

ficient b2. The following result has been concluded from Theorem 3.1.4.

Corollary 3.1.6. Let V : Y → Y be a given self mapping and (Y, db) be a

b-metric space with co-efficient b ≥ 1, whenever their exist φ ∈ Φ and any constant

α ∈ (0, 1) satisfying:

db(V x, V y) 6= 0 ⇒ φ(db(V x, V y)) ≤ [φ(db(x, y))]α

for all x, y ∈ Y . Then V has only one fixed point.

Definition 3.1.7. Let V : Y → Y be a given self mapping and (Y, d) be a

rectangular metric space, whenever there exist a function φ ∈ Φ and any constant

α ∈ (0, 1) satisfying:

d(V x, V y) 6= 0 ⇒ φ(db(V x, V y)) ≤ [φ(d(x, y))]α

for all x, y ∈ Y., then V is called JS-contraction.

The main result by Jleli and Samat [22] can now be established as the following

Corollary of our result.

Corollary 3.1.8. [22] “Let (X, d) be a complete g.m.s and T : X → X be a

given map. Suppose that there exist θ ∈ Θ and any constant k ∈ (0, 1) such that

x, y ∈ X, db(Tx, Ty) 6= 0 ⇒ θ(d(V x, V y)) ≤ [θ(d(x, y))]k. (3.13)

Then T has only one fixed point.”
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Proof. Taking b = 1 in Theorem 3.1.4, the proof follows immediately.

Definition 3.1.9. Let V : Y → Y be a given self mapping and (Y, d) be

metric space, whenever there exist a function φ ∈ Φ and any constant α ∈ (0, 1)

satisfying:

d(V x, V y) 6= 0 ⇒ φ(d(V x, V y)) ≤ [φ(d(x, y))]α

for all x, y ∈ Y., then V is called JS-contraction.

Theorem 3.1.10. [22]“Let (Y, d) be a complete metric space and T : X → X

be a given map. Suppose that there exist θ ∈ Θ and any constant k ∈ (0, 1) such

that

x, y ∈ X, d(V x, V y) 6= 0 ⇒ φ(d(V x, V y)) ≤ [φ(d(x, y))]α. (3.14)

Then T has unique fixed point.”

Proof. The result follows from Corollary 3.1.6 by taking b = 1.

Example 3.1.11. Let Y be the set defined by

Y = {κ ∈ N}

where

κm =
m(m+ 1)

2
, for all m ∈ N

Let d : Y × Y → Y defined by d(x, y) = (x − y)2. It is b-metric with coefficient

b = 2. Let V : Y → Y be the mapping defined by

V κ1 = κ1, V κm = κm−1, for all m ≥ 2

We can check easily that Banach contraction does not hold.

lim
m→∞

db(V κm, V κ1)

db(κm, τ1)
= 1.

Consider a function ψ : (0,∞)→ (1,∞) defined by ψ(u) = e
√
ueu . Then it is easy

to show that φ ∈ Φ. Our aim is to prove V fulfill the condition of the result 3.1.4,
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that is

db(V κm, V κn) 6= 0 ⇒ e
√
db(V κm,V τn)e

db(V κm,V κn) ≤ eα
√
db(κm,κn)e

d
b (κm,κn),

for any α ∈ (0, 1). Then the above condition is equivalent to

db(V κm, V κn)edb(V κm,V κn) ≤ α2d(κm, κn)edb(κm,κn).

So, we have to check that

db(V κm, V κn) 6= 0 ⇒ db(V κm, V κn)edb(V κm,V κn)−db(κm,κn)

db(κm, κn)
≤ α2, (3.15)

for any α ∈ (0, 1). We discuss two cases.

Case i. m = 1 and n > 2. For this case, we have

db(V κm, V κn)edb(V κm,V κn)−db(κm,κn)

db(κm, κn)
=

(
n2 − n− 2

n2 + n− 2

)2

e(n
2−2)(−n) ≤ e−1

Case ii. m > n > 1. For this case, we have

db(V κm, V κn)edb(V κm,V κn)−db(κm,κn)

db(κm, κm)
=

(
n+m− 1

n+ n+ 1

)2

e(m
2−n2)(n−m) ≤ e−1

Hence, the inequality (3.15) holds for α = e−1/2. Corollary (3.1.6) implies that V

has only one fixed point. It is clear that κ1 is the fixed point of V .



Chapter 4

Fixed Point Results and Modified

JS-Contraction

In this chapter we introduce a family Ψb of the functions ψb which is defined under

some conditions and then modify and extend those conditions which are known

as ψb-contractive conditions or mappings. Further we will define modified form

of JS-contraction and will prove a new fixed point result for self mapping that

satisfies modified JS-contraction in the setup of complete b-metric spaces. Our

result is an extension of the results proved in [20].

4.1 Modified JS-Contraction

We will define modified form of JS-contraction and establish and prove fixed point

theorems for such contraction in the setting of complete b-metric space.

Let Ψb be the family of all functions ψb : (0,∞) → (b
α

1−α ,∞), where 0 ≤ α < 1

and b ≥ 1 satisfying the following assertions:

(ψb1) ψb is non-decreasing.

(ψb2) For each sequence {βn} ⊆ R+, lim
n→∞

ψb(βn) = b
α

1−α if and only if lim
n→∞

(βn) = 0.

32
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(ψb3) There exist 0 < h < 1 and ` ∈ (0,∞] such that lim
β→0+

ψb(β)− 1

βh
= `.

Note. For b = 1 the family ψb becomes the family ψ which is introduced by Jleli

and Samat [22].

4.1.1 ψb-contractive conditions

We modify and extend the family Ψb of function ψb : [0,∞) → [b
α

1−α ,∞) and

proved the following fixed point theorem for self mapping that holds ψb-contractive

condition in the context of complete b-metric spaces.

(ψ
′

b1
) ψb is non-decreasing and ψb(u) = b

α
1−α if and only if u = 0.

(ψb4) ψb(bx+ by) ≤ bψb(x)ψb(y) for all x, y > 0 and b ≥ 1.

The set of all functions ψ : [0,∞)→ [b
α

1−α ,∞) satisfying the conditions (ψ
′

b1
−ψb4)

is denoted by Ψ
′

b.

Note. For b = 1 the contractive conditions coincides with the conditions intro-

duced by Hussain et al. [20].

Definition 4.1.1. Let V : Y → Y be a given self mapping and (Y, db) be a

b-metric space with co-efficient b ≥ 1, whenever there exist positive real numbers

t1, t2, t3 and t4 with 0 ≤ t1 + t2 + t3 + 2t4 < 1 and a function ψb ∈ Ψ
′

b satisfying:

ψb(db(V x, V y))

≤[ψb(db(x, y))]t1 [ψb(db(x, V x))]t2 [ψb(db(y, V y))]t3 [ψb(db(x, V y) + db(y, V x))]t4

for all x, y ∈ Y , then V is called JS-contraction.
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Theorem 4.1.2. Let V : Y → Y be a self mapping and (Y, db) be a complete

b-metric space with b ≥ 1, whenever there are any positive real numbers t1, t2, t3

and t4 with 0 ≤ t1 + t2 + t3 + 2t4 < 1 and a function ψb ∈ Ψ
′

b satisfying:

ψb(db(V x, V y)) (4.1)

≤[ψb(db(x, y))]t1 [ψb(db(x, V x))]t2 [ψb(db(y, V y))]t3 [ψb(db(x, V y) + db(y, V x))]t4

for all x, y ∈ Y , then V has only one fixed point.

Proof. Let y0 ∈ Y be arbitrary. Let us consider a sequence {ym} by ym+1 = V ym

for all m ≥ 0.

We want to prove {ym} is a Cauchy sequence. If ym = ym+1 then ym is the fixed

point of V , so there is nothing to prove. So suppose that ym 6= ym+1, for all m ≥ 0.

Setting db(ym, ym+1) = dbm.

It follows form (4.1)

ψb(db(ym, ym+1)) = ψb(db(V ym−1, V ym))

≤ [ψb(db(ym−1, ym))]t1 .[ψb(db(ym−1, V ym−1))]
t2 .[ψb(db(ym, V ym))]t3

.[ψb(db(ym−1, V ym) + db(ym, V ym−1))]
t4 .

By using triangular inequality of b-metric space, we get

ψb(db(ym, ym+1))

=[ψb(db(ym−1, ym))]t1 .[ψb(db(ym−1, ym))]t2 .[ψb(db(ym, ym+1))]
t3

.[ψb(db(ym−1, ym+1) + db(ym, ym))]t4

≤[ψb(db(ym−1, ym))]t1 .[ψb(db(ym−1, ym))]t2 .[ψb(db(ym, ym+1))]
t3

.[ψb(b(db(ym−1, ym) + db(ym, ym+1)))]
t4

=[ψb(db(ym−1, ym))]t1 .[ψb(db(ym−1, ym))]t2 .[ψb(db(ym, ym+1))]
t3

.[ψb(bdb(ym−1, ym) + bdb(ym, ym+1))]
t4

≤bt4 [ψb(db(ym−1, ym))]t1 .[ψb(db(ym−1, ym))]t2 .[ψb(db(ym, ym+1))]
t3

.[ψb(db(ym−1, ym)]t4 [ψb(db(ym, ym+1))]
t4
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= bt4 [ψb(db(ym−1, ym)]t1+t2+t4 .[ψb(db(ym, ym+1))]
t3+t4

< bt1+t2+t4 [ψb(d(ym−1, ym)]t1+t2+t4 .[ψb(d(ym, ym+1))]
t3+t4

= [b ψb(d(ym−1, ym)]t1+t2+t4 .[ψb(db(ym, ym+1)]
t3+t4 .

Taking natural log on both sides of above inequality, we have

lnψb(db(ym, ym+1))

≤ (t1 + t2 + t4) ln[b ψ(db(ym−1, ym))] + (t3 + t4) ln[ψb(db(ym, ym+1)].

ln[ψb(db(ym, ym+1))]− (t3 + t4) ln[ψb(db(ym, ym+1)]

≤ (t1 + t2 + t4). ln[b ψb(db(ym−1, ym))]

(1− t3 − t4) ln[ψb(db(ym, ym+1))] ≤ (t1 + t2 + t4) ln[b ψb(db(ym−1, ym))]

ln[ψb(db(ym, ym+1))] ≤
(t1 + t2 + t4)

(1− t3 − t4)
ln[bψb(db(ym−1, ym))]

ψb(db(ym, ym+1)) ≤ [bψb(db(ym−1, ym))]
(t1+t2+t4)
(1−t3−t4) .

Let α =
(t1 + t2 + t4)

(1− t3 − t4)
< 1.

ψb(db(ym, ym+1)) ≤ [bψb(db(ym−1, ym))]α.

Repeating this process, we get

b
α

1−α < ψb(db(ym, ym+1)) ≤ bα[ψb(db(ym−1, ym))]α

≤ bα+α
2

[ψb(db(ym−2, ym−1))]
α2

...

...

≤ bα+α
2+···+αn [ψb(db(y0, y1))]

αn . (4.2)
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Taking m→∞ in the above inequality, we get

lim
m→∞

bα+α
2+···+αm [ψb(db(y0, y1))]

αn = lim
m→∞

b
α(1−αm)

1−α [ψb(db(y0, y1))]
αm

= lim
m→∞

b
α(1−αm)

1−α . lim
m→∞

[ψb(db(y0, y1))]
αm

= b
α

1−α .1 (since αm → 0 as m→∞)

= b
α

1−α .

By using Sandwich Theorem, we get

⇒ lim
m→∞

ψb(db(ym, ym+1)) = b
α

1−α .

⇒ lim
m→∞

db(ym, ym+1) = 0.

From the condition (ψb3), there exist 0 < h < 1 and ` ∈ (0,∞] such that

lim
m→∞

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
= `.

Let ` < ∞. Then by definition of limit, choosing r =
`

2
there exist a positive

integer m0 ∈ N such that m > m0∣∣∣∣ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− `
∣∣∣∣ ≤ r.

−r ≤ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≤ r

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≥ −r.

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≤ r.
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Consider

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≥ −r.

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
≥ `− r.

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
≥ `− `

2
= r.

for all m > m0. Then

db(ym, ym+1)
h ≤ s[ψb(db(ym, ym+1))− 1],

Where s =
1

r
.

Using (4.2) in the the above inequality, we have

(db(ym, ym+1))
h ≤ sbα+α

2+···+αn [[ψb(db(y0, y1))]αn − 1
]
, for all m ≥ m0. (4.3)

Since b ≥ 1 and 0 < h < 1, then bh > 0. Then for all m > m0.

Multiplying an inequality (4.3) by bhm, we have

bhm(db(ym, ym+1))
h ≤ sbhbα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αn − 1
]
.

Taking m→∞ in the above inequality, we have

lim
m→∞

bhm(db(ym, ym+1))
h ≤ sbh lim

n→∞
bα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αm − 1
]

= sbh lim
n→∞

bα+α
2+···+αm . lim

m→∞
m
[
[ψb(db(y0, y1))]

αm − 1
]

= sbh.b
α

1−α . lim
m→∞

m
[
[ψb(db(y0, y1))]

αm − 1
]
.
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Consider

lim
m→∞

m[ψb(db(y0, y1))
αm − 1] = lim

m→∞

[ψb(db(y0, y1))
αm − 1]

1
m

= lim
m→∞

αm ln(α) ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

−1
m2

= lim
m→∞

−m2αm ln(α) ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

= lim
m→∞

−m2αm ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

αm1

= lim
n→∞

−m2

αm1
. lim
m→∞

ln(α) ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

= 0. ln(α) ln(ψb(db(y0, y1))

= 0 (where α1 =
1

α
).

This implies that

lim
m→∞

m[ψb(db(y0, y1))
αm − 1] = 0. (4.4)

⇒ lim
m→∞

bhm(db(ym, ym+1))
h = 0.

Then by definition of limit there exist ε > 0, choosing ε ∈ (0, 1) and there is an

m1 ∈ N such that for all m ≥ m1

∣∣bhm(db(ym, ym+1))
h − 0

∣∣ < ε

bhm(db(ym, ym+1))
h < ε

bm
1
h (db(ym, ym+1)) < ε

′
(where ε1/h = ε

′
)

db(ym, ym+1) <
ε
′

bm
1
h

db(ym, ym+1) <
1

bm
1
h

, for all m ≥ m1. (4.5)

From (4.3)

(db(ym, ym+1))
h ≤ sbα+α

2+···+αm [[ψb(db(y0, y1))]αm − 1
]
, for all m ≥ m0.
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Since b ≥ 0, 0 < h < 1 then b2h > 0. Then for all m > m0.

b2hm(db(ym, ym+1))
h ≤ sb2hbα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αm − 1
]
.

Taking m→∞ in the above inequality and using (4.4), we get

lim
m→∞

b2hm(db(xm, xm+1))
h = 0.

Then there exist m1 ∈ N such that

db(ym, ym+1) <
1

b2m
1
h

, for all m ≥ m1.

Replacing m with m+ 1, we get

db(ym+1, ym+2) <
1

b2(m+ 1)
1
h

, for all m ≥ m1. (4.6)

Continuing in this way, we obtain

db(yn−1, yn) <
1

bn−m(n− 1)
1
h

, for all m > m1. (4.7)

Let N = max{m0,m1}.

Let me to prove {ym} is a Cauchy sequence . For n > m > N and using (4.5),

(4.6) and (4.7), we have

db(xm, xn) ≤ b db(xm, xm+1) + b2db(xm+1, xm+2) + · · ·+ bn−mdb(xn−1, xn)

≤
(

b

b(m)1/h
+

b2

b2(m+ 1)1/h
+ · · ·+ bn−m

bn−m(n− 1)1/h

)
=

n−1∑
j=m

1

j1/h

≤
∞∑
j=1

1

j1/h
.

Since 0 < h < 1, then
∑∞

j=1

1

j1/h
converges.
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Therefore db(ym, yn)→∞ as m,n→ 0.

Hence we have proved {ym} is a Cauchy sequence in Y . The completeness of Y

admits that there exist y0 ∈ Y such that ym →∞.

First we prove that y0 is a fixed point of V . Contrary suppose that y0 6= V y0, then

1 < ψb(db(V y0, ym)) = ψb(db(V y0, V ym+1))

≤ [ψb(db(y0, ym+1)]
t1 .[ψb(db(y0, V y0))]

t2 .[ψb(db(ym+1, V ym+1))]
t3

.[ψb(db(y0, V ym+1) + db(ym+1, V y0)]
t4 .

Taking m→∞ in the above inequality, we get

1 < ψb(db(V y0, y0)) ≤ [ψb(db(y0, V y0))]
t2+t4 ≤ ψb(db(V y0, y0))

which contradict to our supposition. Hence we have y0 = V y0. Therefore, y0 is

fixed point of V . For uniqueness, let x0 be another fixed point of V .

Then

1 < ψb(db(x0, y0)) = ψb(db(V x0, V y0))

≤ [ψb(db(x0, y0))]
t1 .[ψb(db(x0, V x0))]

t2 .[ψb(db(y0, V y0))]
t3

.[ψb(db(x0, V y0) + db(y0, V x0))]
t4

= [ψb(db(x0, y0))]
t1 [ψb(db(x0, V x0))]

t2 [ψb(db(y0, V y0))]
t3

.[ψb(db(x0, y0)) + ψb(db(y0, x0))]
t4

≤ [ψb(db(x0, y0))]
t1 [ψb(db(x0, V x0))]

t2 [ψb(db(y0, V y0))]
t3

≤ 2t4 [ψb(db(x0, y0))]
t1 .

1 < ψb(db(x0, y0)) ≤ 2t4 [ψb(db(x0, y0))]
t1 < ψ(db(x0, y0))

which contradict to our supposition. Hence x0 = y0. Thus V has unique fixed

point.

Definition 4.1.3. Let V : Y → Y be self mapping and (Y, db) be a b-metric

space. Then V is called:
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(i) A C-contraction if for any α ∈ (0, 1
2
) satisfying the following inequality:

db(V a, V b) ≤ α[db(a, V b) + db(b, V a)]

for all a, b ∈ Y .

(ii) A K-contraction if for any α ∈ (0, 1
2
) satisfying the following inequality:

db(V a, V b) ≤ α[db(a, V a) + db(b, V b)]

for all a, b ∈ Y .

(iii) A Reich contraction if and only if there exist a non-negative real numbers

t1, t2, t3 with t1 + t2 + t3 < 1 satisfying the following inequality

db(V a, V b) ≤ t1db(a, b) + t2db(a, V a) + t3db(b, V b)

for all a, b ∈ Y .

(iv) A Ciric contraction if and only if there exist non negative real numbers

t1, t2, t3 and t4 such that t1 + t2 + t3 + t4 < 1 satisfying:

db(V a, V b) ≤ t1db(a, b) + t2db(a, V a) + t3db(a, V a) + t4db(a, V b) + db(b, V a)]

for all a, b ∈ Y .

Theorem 4.1.4. Let V : Y → Y be a given self mapping and (Y, db) be a

complete b-metric space with b ≥ 1, whenever there are positive real numbers

t1, t2, t3 and t4 with 0 ≤ t1 + t2 + t3 + 2t4 < 1 satisfying:

√
db(V x, V y)

≤ t1
√
db(x, y) + t2

√
db(x, V x) + t3

√
db(y, V y) + t4

√
(db(x, V y) + db(y, V x))

(4.8)

for all x, y ∈ Y , then V has only one fixed point.
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Proof. The result follows from Theorem 4.1.2 by taking ψb(u) = b
α

1−α e
√
u.

Remark 4.1.5. The following result follows from the condition (4.8).

db(V x, V y) ≤ t1
2db(x, y) + t2

2db(x, V x) + t3
2db(y, V y) + t4

2[db(x, V y) + db(y, V x)]

+ 2t1t2
√
db(x, y)db(x, V x) + 2t1t3

√
db(x, y)db(y, V y)

+ 2t1t4
√
db(x, y)[db(x, V y) + db(y, V x)] + 2t2t3

√
db(y, V x)db(y, V y)

+ 2t2t4
√
db(x, V x)[db(x, V y) + db(y, V x)]

+ 2t3t4
√
db(y, V y)[db(x, V y) + db(y, V x)].

Next, in view Remark of 4.1.5, by taking t1 = t4 = 0 in Theorem 4.1.4, we get the

following extension.

Theorem 4.1.6. Let V : Y → Y be a given self mapping and (Y, db) be a

complete b-metric space with b ≥ 1, whenever there are any positive real numbers

t2, t3 with 0 < t2 + t3 < 1, satisfying:

db(V x, V y) ≤ t2
2db(x, V x) + t3

2db(y, V y) + 2t2t3
√
db(x, V x)db(y, V y) (4.9)

for all x, y ∈ Y . Then V has only one fixed point.

Any other way, the result follows from Theorem 4.1.4 by taking t1 = t2 = t3 = 0.

Theorem 4.1.7. Let V : Y → Y be a given self mapping and (Y, db) be a

complete b-metric space with b ≥ 1, whenever there are positive real number t2, t3

with 0 < t2 + t3 < 1, satisfying:

db(V x, V y) ≤ t2
2db(x, V x) + t3

2db(y, V y) + 2t2t3
√
db(x, V x)db(y, V y)

for all x, y ∈ Y . Then V has only one fixed point.

The following result follows from Theorem 4.1.4 by taking t1 = t2 = t3 = 0.
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Theorem 4.1.8. Let V : Y → Y be a given self mapping and (Y, db) be a

complete b-metric space with b ≥ 1 and there is any t4 ∈ [0,
1

2
) satisfying

db(V x, V y) ≤ t4
2[db(x, V y) + db(y, V x)]

for every x, y ∈ Y . Then V has only one fixed point.

The following result follows from Theorem 4.1.4, by taking k4 = 0.

Theorem 4.1.9. Let V : Y → Y be a given self mapping and (Y, db) be a

complete b-metric space with b ≥ 1, whenever there are positive real numbers

t1, t2, k3 with 0 < t1 + t2 + t3 < 1, satisfying:

db(V x, V y) ≤ t1
2db(x, y) + t2

2db(x, V x) + t3
2db(y, V y)

+ 2t1t2
√
db(x, y)d(x, V x) + 2t1t3

√
db(x, y)d(y, V y)

+ 2t2t3
√
db(x, V x)db(y, V y)

for all x, y ∈ Y , then V has only one fixed point.

The following Corollary follows from Theorem 4.1.2 by taking ψ(u) = e
n√u.

Corollary 4.1.10. Let V : Y → Y be a self mapping and (Y, db) be a complete

b-metric space with b ≥ 1, whenever there are positive real numbers t1, t2, t3 and

t4 with 0 < t1 + t2 + t3 + 2t4 < 1 satisfying:

n
√
db(V x, V y) ≤ t1

n
√
db(x, y)+t2

n
√
db(x, V x)+t3

n
√
db(y, V y)+t4

n
√

(db(x, V y) + d(y, V x))

(4.10)

for all x, y ∈ Y , then V has only one fixed point.



Chapter 5

Common Fixed Point Theorem

and Generalized JS-Contraction

In this chapter, we define the generalized modified JS-contraction in b-metric

spaces for a pair of self mapping satisfying ψb-contractive condition and prove

common fixed point results for such contraction in the framework of complete

b-metric spaces. The obtained result extend the result of Ahmad et al.[3]. The

presented result are generalization of recent fixed point result due to Hussain et

al. [20]. We have also concluded the given results of Ahmad et al. [3].

5.1 Main result

Very recently, Ahmad et al. [3] defined two families G(U, V ) and H(U, V ) which

are defined as follows.

The family G(U, V ) defined by all functions t : Y × Y → [0, 1) such that

t(x, V Uy) ≤ t(x, y) and t(UV x, y) ≤ t(x, y) for all x, y ∈ Y

and the family H(U, V ) defined by all functions γ : Y → [0, 1) such that

γ(V Uy) ≤ γ(y)

44
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For two given self mapping U, V : Y → Y and a b-metric space (Y, db).

Proposition 5.1. Let (Y, d) be a b-metric space and U, V : Y → Y be given self

mappings. Let y0 ∈ Y , take a sequence {ym} defined by

y2m+1 = Uy2m, y2m+2 = V y2m+1, for each non-negative integer m.

If t ∈ G(U, V ), then t(x, y2m) ≤ t(x, y0) and t(y2m+1, y) ≤ t(y1, y) for each x, y ∈ Y

and non-negative integer m.

Definition 5.1.1. Let (Y, db) be a b-metric space with co-efficient b ≥ 1 and

a given self mappings U, V : Y → Y is called generalized modified JS-contraction

whenever there are mappings t1, t2, t3, t4 ∈ G(U, V ) with

0 ≤ t1(x, y) + t2(x, y) + t3(x, y) + 2t4(x, y) < 1 and there exist a function ψb ∈ Ψ
′

b

satisfying

ψb(db(Ux, V y)) ≤ [ψb(db(x, y))]t1(x,y).[ψb(db(x, Ux))]t2(x,y).[ψb(db(y, V y))]t3(x,y)

.[ψb(db(x, V y) + db(y, Ux))]t4(x,y)

for all x, y ∈ Y .

Note. See 4.1 and 4.1.1 in Chapter 4 there is defined a family Ψb and Ψ
′

b.

Now we state our main theorem.

Theorem 5.1.2. Let (Y, db) be complete b-metric space with co-efficient b ≥ 1

and let U, V : Y → Y be a given self mappings, whenever there are mappings

t1 + t2 + t3 + t4 ∈ G(U, V ) and a function ψb ∈ Ψ
′

b satisfying:

(a) t1(x, y) + t2(x, y) + t3(x, y) + 2t4(x, y) < 1

(c) ψb(db(Ux, V y))

≤ [ψb(db(x, y))]t1(x,y).[ψb(db(x, Ux)]t2(x,y).[ψb(db(y, V y)]t3(x,y)

.[ψb(db(x, V y) + db(y, Ux)]t4(x,y)

for all x, y ∈ Y , then U and V have only one fixed point.
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Proof. Let y0 ∈ Y , we define the sequence {yn} by

y2m+1 = Uy2m and y2m+2 = V y2m+1

for every non-negative integer m. From Proposition 5.1 for every non-negative

integer m, we have

1 < ψb(db(y2m, y2m+1)) = ψb(db(V y2m−1, Uy2m)) = ψb(db(Uy2m, V y2m−1))

≤ [ψb(db(y2m, y2m−1))]
t1(y2m,y2m−1).[ψb(db(y2m, Uy2m))]t2(y2m,y2m−1)

.[ψb(db(y2m−1, V y2m−1))]
t3(y2m,y2m−1)

.[ψb(db(y2m, V y2m−1) + db(y2m−1, Ux2m))]t4(y2m,y2m−1)

= [ψb(db(y2m, y2m−1))]
t1(y2m,y2m−1).[ψb(db(y2m, x2m+1))]

t2(y2m,y2m−1)

.[ψb(db(y2m−1, y2m))]t3(y2m,y2m−1).[db(y2m−1, y2m+1))]
t4(y2m,y2m−1)

≤ [ψb(db(y2m, y2m−1))]
t1(y2m,y2m−1).[ψb(db(y2m, y2m+1))]

t2(y2m,y2m−1)

.[ψb(db(y2m−1, y2m))]t3(y2m,y2m−1)

.[ψb(b((db(y2m−1, y2m) + db(y2m, y2m+1)))]
t4(y2m,y2m−1)

≤ [ψb(db(y2m, y2m−1))]
t1(y0,y2m−1).[ψb(db(y2m, y2m+1))]

t2(y0,y2m−1)

.[ψb(db(y2m−1, y2m))]t3(y0,y2m−1)

.bt4(y0,y2m−1).[ψb(db(y2m−1, y2m)]t4(y0,y2m−1)

.[db(y2m, y2m+1))]
t4(y0,y2m−1).

≤ [ψb(db(y2m, y2m−1))]
t1(y0,y1).[ψb(db(y2m, y2m+1))]

t2(y0,y1)

.[ψb(db(y2m−1, y2m))]t3(y0,y1)

.[b(y0, y1)]
t4(y0,y1).[ψb(db(y2m−1, y2m)]t4(y0,y1).[db(y2m, y2m+1))]

t4(y0,y1).

= bt4(y0,y1).[ψb(db(y2m−1, y2m)]t1(y0,y1)+t3(y0,y1)+t4(y0,y1)

.[ψ(db(y2m, y2m+1))]
t2(y0,y1)+t4(y0,y1)

≤ bt1(y0,y1)+t3(y0,y1)+t4(y0,y1)[ψb(db(y2m−1, y2m))]t1(y0,y1)+t3(y0,y1)+t4(y0,y1)

.[ψb(db(y2m, y2m+1))]
t2(y0,y1)+t4(y0,y1).

Taking ln on both sides of the above inequality, we have
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ln[ψb(y2m, y2m+1))]− (t3(y0, y1) + t4(y0, y1)) ln[ψb(db(y2m, y2m+1)]

≤ (t1(y0, y1) + t2(y0, y1) + t4(y0, y1)) ln[bψb(db(y2m−1, y2m))].

(1−t3(y0, y1)−t4(y0, y1)) ln[ψb(db(y2m, y2m+1))] ≤ (t1(y0, y1) + t2(y0, y1) + t4(y0, y1))

. ln[bψb(db(y2m−1, y2m))].

ln[ψb(db(ym, ym+1))] ≤
(t1(y0, y1) + t2(y0, y1) + t4(y0, y1))

(1− t3(yo, y1)− t4(y0, y1))
ln[bψb(db(y2m−1, y2m))].

ψb(db(y2m, y2m+1)) ≤ [bψb(db(y2m−1, y2m))]
(t1(y0,y1)+t2(y0,y1)+t4(y0,y1))

(1−t3(y0,y1)−t4(y0,y1)) .

Let

α =
t1(y0, y1) + t3(y0, y1) + t4(y0, y1)

1− t3(y0, y1)− t4(y0, y1)
< 1.

Thus [ψb(db(y2m, y2m+1))] ≤ [bψb(db(y2m−1, y2m))]α. (5.1)

Similarly, we have

1 < ψb(db(y2m+1, y2m+2)) = ψb(db(Uy2m, V y2m+1))

≤ [ψb(db(y2m, y2m+1))]
t1(y2m,y2m+1).[ψb(db(y2m, Uy2m))]t2(y2m,y2m−1)

.[ψb(db(y2m+1, V y2m+1))]
t3(y2m,y2m−1)

.[ψb(db(y2m, V y2m+1) + d(y2m+1, Uy2m))]t4(y2m+1,y2m)

= [ψb(db(y2m, y2m+1))]
t1(y2m,y2m+1).[ψb(db(y2m, y2m+1))]

t2(y2m,y2m+1)

.[ψb(db(y2m+1, y2m+2))]
t3(y2m,y2m+1).[ψb(db(y2m, y2m+2))]

t4(y2m+1,y2m)

≤ [ψb(db(y2m, y2m+1))]
t1(y0,y2m+1).[ψb(db(y2m, y2m+1))]

t2(y0,y2m+1)

.[ψb(db(y2m+1, y2m+2))]
t3(y0,y2m+1)

.[ψb(b(db(y2m, y2m+1) + db(y2m+1, y2m+2))]
t4(y0,y2m+1)

≤ [ψb(db(y2m, y2m+1))]
a1(y0,y1).[ψb(db(y2m, y2m+1))]

t2(y0,y1)

.[ψb(db(y2m+1, y2m+2))]
t3(y0,y1)

.bt4(y0,y1).[ψb(db(y2m, y2m+1)]
t4(y0,y1).[db(y2m+1, y2m+2)]

t4(y0,y1)
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≤ [ψb(d(y2m, y2m+1))]
t1(y0,y1).[ψb(d(y2m, y2m+1))]

t2(y0,y1)

.[ψb(d(y2m+1, y2m+2))]
t3(y0,y1)

.bt4(y0,y1)[ψb(db(y2m, y2m+1)]
t4(y0,y1)[db(y2m+1, y2m+2)]

t4(y0,y1)

≤ bt1(y0,y1)+t2(y0,y1)+t4(y0,y1).[ψb(db(y2m, y2m+1))]
t1(y0,y1)+t2(y0,y1)+t4(y0,y1)

.[ψb(db(y2m+1, y2m+2))]
t3(y0,y1)+t4(y0,y1).

Taking ln on both sides of the above inequality, we have

ln[ψb(db(y2m+1, y2m+2))]− (t3(y0, y1) + t4(y0, y1)) ln[ψb(db(y2m+1, y2m+2)]

≤ (t1(y0, y1) + t2(y0, y1) + t4(y0, y1)) ln[bψb(db(y2m, y2m+1))].

(1−t3(y0, y1)−t4(y0, y1)) ln[ψb(db(y2m+1, y2m+2))] ≤ (t1(y0, y1) + t2(y0, y1) + t4(y0, y1))

. ln[bψb(db(y2m, y2m+1))].

ln[ψb(db(ym, ym+1))] ≤
(t1 + t2 + t4)

(1− t3 − t4)
ln[bψb(db(y2m−1, y2m))].

ψb(db(y2m+1, y2m+2)) ≤ [bψb(db(y2m, y2m+1))]
(t1(y0,y1)+t2(y0,y1)+t4(y0,y1))

(1−t3(y0,y1)−t4(y0,y1)) .

Thus

ψb(db(y2m+1, y2m+2) ≤ [bψb(d(y2m, y2m+1))]
t1(y0,y1)+t3(y0,y1)+t4(y0,y1)

1−t3(y0,y1)−t4(y0,y1) . (5.2)

Let

α =
t1(y0, y1) + t3(y0, y1) + t4(y0, y1)

1− t3(y0, y1)− t4(y0, y1)
< 1.

Then from 5.1 and 5.2, we get

1 < ψb(db(ym, ym+1)) ≤ bα[ψb(d(ym−1, ym))]α

≤ bα+α
2

[ψb(db(ym−2, ym−1))]
α2

...

≤ bα+α
2···+αm [ψb(db(y0, y1))]

αm . (5.3)
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Taking m→∞ in the above inequality, we get

lim
m→∞

bα+α
2+···+αm [ψb(db(y0, y1))]

αm = lim
m→∞

b
α(1−αm)

1−α [ψb(db(y0, y1))]
αm

= lim
m→∞

b
α(1−αm)

1−α . lim
m→∞

[ψb(db(y0, y1))]
αm

= b
α

1−α .1

= b
α

1−α .

Using Sandwitch Theorem, we get

lim
m→∞

ψb(db(ym, ym+1)) = b
α

1−α .

By using condition 4.1. From condition of (ψb1), we have

lim
m→∞

db(ym, ym+1) = 0.

From the condition (ψb3), there exist 0 < h < 1 and ` ∈ (0,∞] such that

lim
m→∞

ψb(db(ym, ym+1))− 1

d(ym, ym+1)h
= `.

∣∣∣∣ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− `
∣∣∣∣ ≤ r.

−r ≤ ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≤ r.

Consider

ψb(db(ym, ym+1))− 1

db(ym, ym+1)h
− ` ≥ −r.

ψ(d(ym, ym+1))− 1

d(ym, ym+1)h
≥ `− r.
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ψb(d(ym, ym+1))− 1

d(ym, ym+1)h
≥ `− `

2
= r.

d(ym, ym+1)
h ≤ 1

r
ψb(d(ym, ym+1))− 1

for all m > m0. Then

db(ym, ym+1)
h ≤ s[ψb(db(ym, ym+1))− 1],

Where s =
1

r
.

Suppose that ` = ∞. Let r > 0 be an arbitrary positive number. From the

definition of limit, there exist m0 ∈ N such that

ψb(db(ym, ym+1))− 1

d(ym, ym+1)h
≥ r.

This implies that, for all n ≥ n0

(db(ym, ym+1))
h ≤ s[ψb(db(ym, ym+1))− 1].

Hence for all cases there exist, s > 0 and m0 ∈ N such that

(db(ym, ym+1))
h ≤ s[ψb(db(ym, ym+1))− 1].

Using (5.2) in the above inequality, we get

(db(ym, ym+1))
h ≤ sbα+α

2+···+αm [[ψb(d(y0, y1))]
αm − 1

]
. (5.4)

Since b ≥ 1 and 0 < h < 1, then bh > 0. Then for all m > m0

bhm(db(ym, ym+1))
h ≤ sbhbα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αn − 1
]
.

Taking m→∞ in the above inequality.

lim
m→∞

bhm(db(ym, ym+1))
h ≤ sbh lim

n→∞
bα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αm − 1
]
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lim
m→∞

bhm(db(ym, ym+1))
h = sbh lim

n→∞
bα+α

2+···+αm . lim
m→∞

m
[
[ψb(db(y0, y1))]

αm − 1
]

= sbh.b
α

1−α . lim
m→∞

m
[
[ψb(db(y0, y1))]

αm − 1
]
.

Consider

lim
m→∞

m[ψb(db(y0, y1))
αm − 1] = lim

m→∞

[ψb(db(y0, y1))
αm − 1]

1
m

= lim
m→∞

αm ln(α) ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

−1
m2

= lim
m→∞

−m2αm ln(α) ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

= lim
m→∞

−m2αm ln(ψb(db(y0, y1))[ψb(db(y0, y1))]
αm

αm1

= lim
m→∞

−m2

αm1
. lim
m→∞

ln(α) ln(ψb(d(y0, y1))[ψb(d(y0, y1))]
αm

= 0. ln(α) ln(ψb(db(y0, y1))

= 0 (where α1 =
1

α
).

lim
m→∞

m[ψb(db(y0, y1))
αm − 1] = 0. (5.5)

This implies that

lim
m→∞

bhm(db(ym, ym+1))
h = 0.

Then by definition of limit there exist ε > 0, choosing ε ∈ (0, 1) and there is an

m1 ∈ N such that for every m ≥ m1

∣∣bhm(d(ym, ym+1))
h − 0

∣∣ < ε

bhm(db(ym, ym+1))
h < ε

bm
1
h (db(ym, ym+1)) < ε

′
(where ε1/h = ε

′
)

db(ym, ym+1) <
ε
′

bm
1
h

⇒ db(ym, ym+1) <
1

bm
1
h

, for all m ≥ m1. (5.6)



Generalized Modified JS-contraction 52

From (5.4) (db(ym, ym+1))
h ≤ sbα+α

2+···+αm [[ψb(db(y0, y1))]αm − 1
]
.

Since b ≥ 0, 0 < h < 1 then b2h > 0. Then for all m > m0

b2hm(db(ym, ym+1))
h ≤ sb2hbα+α

2+···+αmm
[
[ψb(db(y0, y1))]

αm − 1
]
.

Taking lim m→∞ and using (5.5)

lim
m→∞

b2hm(d(ym, ym+1))
h = 0.

Then there exist m1 ∈ N such that

db(ym, ym+1) <
1

b2m
1
h

, for all m ≥ m1.

Replacing m with m+ 1, we get

db(ym+1, ym+2) <
1

b2(m+ 1)
1
h

, for all m ≥ m1. (5.7)

Continuing in this way, we obtain

db(yn−1, yn) <
1

bn−m(n− 1)
1
h

, for all m ≥ m1. (5.8)

Let N = max{m0,m1}.

Now we prove that {ym} is a Cauchy sequence . For n > m > N and using (5.6),

(5.7) and (5.8), we have

db(ym, yn) ≤ b db(ym, ym+1) + b2db(ym+1, ym+2) + · · ·+ bn−md(yn−1, yn)

≤
(

b

b(m)1/h
+

b2

b2(m+ 1)1/h
+ · · ·+ bn−m

bn−m(n− 1)1/h

)
=

(
1

(m)1/h
+

1

(m+ 1)1/h
+ · · ·+ 1

(n− 1)1/h

)
=

n−1∑
j=m

1

j1/h

≤
∞∑
j=1

1

j1/h
.
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Since 0 < h < 1, then
∑∞

j=1

1

j1/h
converges.

Therefore db(ym, yn)→∞ as m,n→ 0.

Thus it is proved that {ym} is a Cauchy sequence in Y . The completeness of Y

insure that there exist y0 ∈ Y such that ym →∞. First we show that y0 is a fixed

point of U . Contrary suppose that y0 6= Uy0

1 < ψb(db(Uy0, y2m+2)) = ψb(db(Uy0, V y2m+1))

≤ [ψb(db(y0, y2m+1)]
t1(y0,y2m+1).[ψb(d(y0, Uy0))]

t2(y0,y2m+1)

.[ψb(d(y2m+1, V y2m+1))]
t3(y0,y2m+1).[ψb(db(y0, V y2m+1) + db(y2m+1, Uy0)]

t4(y0,y2m+1)

= [ψb(db(y0, y2m+1)]
t1(y0,y2m+1).[ψb(d(y0, Uy0))]

t2(y0,y2m+1)

.[ψb(db(y2m+1, y2m+2))]
t3(y0,y2m+1).[ψb(d(y0, y2m+2) + db(x2m+1, Uy0)]

t4(y0,y2m+1)

≤ [ψb(db(y0, y2n+1)]
t1(y0,y1).[ψb(db(y0, V y0))]

t2(y0,y1)

.[ψb(db(y2m+1, y2m+2))]
t3(y0,y1).[ψb(db(y0, y2m+2) + db(y2m+1, Uy0)]

t4(y0,y1).

Taking lim n→ +∞, in the above inequality, we get

1 < ψb(db(Uy0, y0)) ≤ [ψb(db(y0, Uy0))]
t2(y0,y1)+t4(y0,y1) < ψb(db(Uy0, y0))

which contradict to our supposition y0 6= Uy0.

Hence y0 = Uy0. We also show that x0 is the fixed point of V , suppose y0 6= V y0,

then by the Propsition 5.1, we have

1 < ψb(db(y2m+1, V y0)) = ψb(db(Uy2m, V y0))

≤ [ψb(d(y2m, y0)]
a1(y2m,y0).[ψb(d(y2m, Uy2n))]a2(y2m,y0).[ψb(db(y0, V y0))]

a3(y2m,y0)

.[ψb(d(y2m, V y0) + db(y0, Uy2m)]a4(y2m,y0)

= [ψb(db(y2m, y0)]
a1(y2m,y0).[ψb(db(y2m, y2m+1))]

a2(y2m,y0).[ψb(db(y0, V y0))]
a3(y2m,y0)

.[ψb(db(y2m, V y0) + db(y0, y2m+1)]
a4(y2m,y0)

≤ [ψb(db(y2m, y0)]
a1(y0,y0).[ψb(db(y0, V y0))]

a2(y0,y0).[ψb(db(y0, V y0))]
a3(y0,y0)

.[ψb(db(y1, V y0)]
a4(y0,y0)[db(y0, y2n+1)]

a4(y0,y0).
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Taking m→ +∞, in the above inequality, we get

1 < ψb(db(y0, V y0)) ≤ [ψb(db(y0, V y0))]
a3(y0,y0)+a4(y0,y1) < [ψb(db(y0, V y0))] (5.9)

which contradict to our supposition y0 6= V y0.

Hence y0 = V y0. Therefore, y0 is the fixed point of U and V .

Now we shall show y0 is unique fixed point of U and V , for this let x0 be another

fixed point of U and V . This implies x0 = Ux0 = V x0

1 < ψb(db(x0, y0)) = ψb(db(Ux0, V y0))

≤ [ψb(db(x0, y0))]
t1(x0,y0).[ψb(d(x0, Ux0))]

t2(x0,y0).[ψb(d(y0, V y0))]
t3(x0,y0)

.[ψb(db(x0, V y0) + d(y0, Ux0))]
t4(x0,y0)

≤ [ψb(db(x0, y0))]
t1(x0,y0).[ψb(d(x0, y0))]

t4(x0,y0).[ψb(d(x0, y0))]
t4(x0,y0)

= [ψb(db(x0, y0))]
t1(x0,y0)+2t4(x0,y0) < [ψb(db(x0, y0))].

Which contradict to our supposition. Hence U and V have only one fixed point.

The following results has been concluded from above result.

Corollary 5.1.3. Let (Y, db) be a complete b-metric space with coefficient

b ≥ 1 and U : Y → Y be the given self mappings, whenever there are mappings

t1, t2, t3, t4 ∈ M(U, V ) and a function ψb ∈ Ψ
′

b satisfying:

(a) t1(x, y) + t2(x, y) + t3(x, y) + t3(x, y) + 2t4(x, y) < 1

(b) ψb(db(Ux, Uy))

≤ [ψb(db(x, y))]t1(x,y).[ψb(db(x, Ux)]t2(x,y).[ψb(y, Uy)]t3(x,y)

.[ψb(db(x, Uy) + db(y, Ux)]t4(x,y)

for all x, y ∈ Y .

Proof. The result follows from Theorem 5.1.2 by taking U = V .
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Theorem 5.1.4. Let (Y, db) be a complete b-metric space with coefficient b ≥ 1

and U, V : Y → Y be the given self mapping, whenever there are mapping

t1, t2, t3, t4 ∈M(U, V ) satisfying:

(a) t1(x, y) + t2(x, y) + t3(x, y) + t3(x, y) + 2t4(x, y) < 1

(b)
√
ψb(db(Ux, V y))

≤ t1(x, y)
√

(db(x, y)) + t2(x, y)
√
d(x, Ux) + t3(x, y)

√
(y, V y)

+ t4(x, y)
√
db(x, V y) + d(y, Ux)

for all x, y ∈ Y , then U and V have a unique fixed point.

Proof. Taking ψ(t) = b
α

1−α e
√
t in Theorem 5.1.2, the proof follows immediately.

Corollary 5.1.5. Let (Y, db) be a complete b-metric space with coefficient

b ≥ 1 and U : Y → Y be the given self mapping, whenever there are mappings

t1, t2, t3, t4 ∈ M(U, V ) satisfying:

(a) t1(x, y) + t2(x, y) + t3(x, y) + 2t4(x, y) < 1

(b)
√

(db(Ux, Uy))

≤ t1(x, y)
√
db(x, y)) + t2(x, y)

√
db(x, Ux) + t3(x, y)

√
db(y, Uy)

+ t4(x, y)
√
d(x, Uy) + d(y, Ux)

for all x, y ∈ Y , then U has only one fixed point.

Proof. The proof follows from corollary 5.1.3 by taking ψb(t) = b
α

1−α e
√
t.

Remark 5.1.6. From the above Corollary, we deduce the following result

db(Ux, V y) ≤a21(x, y)d(x, y)

+ a22(x, y)
2
db(x, Ux) + a33(x, y)

2
db(y, V y)

+ a44(x, y)
2
[db(x, V y) + db(y, Ux)]
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db(Ux, V y) ≤+ 2a1(x, y)a2(x, y)
√
db(x, y)d(x, Ux)

+ 2a1(x, y)a3(x, y)
√
db(x, y)db(y, V y)

+ 2a1(x, y)a4(x, y)
√
db(x, y)[db(x, V y) + db(y, Ux)

+ 2a2(x, y)a3(x, y)
√
db(x, Ux)db(y, V y)

+ 2a2(x, y)a4(x, y)
√
db(x, Ux)[db(x, V y) + db(y, Ux)

+ 2a3(x, y)a4(x, y)
√
db(y, V y)[db(x, V y) + db(y, Ux).

Theorem 5.1.7. Let (Y, db) be a complete b-metric space with coefficient b ≥ 1

and U, V : Y → Y be a given self mappings, whenever there are mappings

γ1, γ2, γ3, γ4 ∈ N(U, V ) satisfying:

(a) γ1(y) + γ2(y) + γ3(y) + γ3(y) + 2γ4(y) < 1

(b) ψb(db(Ux, V y))

≤ [ψb(db(x, y))]γ1(x).[ψb(db(x, Ux)]γ2(x).[ψb(y, V y)]γ3(y)

.[ψb(db(x, V y) + db(y, Ux)]γ4(y)

for all x, y ∈ Y . and ψb ∈ Ψ
′

b, then U and V have only one fixed point.

Proof. Define t1, t2, t3, t4 : Y × Y → [0, 1) by t1(x, y) = γ1(y), t2(x, y) = γ2(y),

t3(x, y) = γ3(y) and t4(x, y) = γ4(y) for all x, y ∈ Y . Then for every x, y ∈ Y .

t1(x, V Uy) = γ1(V Ux) ≤ γ1(y) = t1(x, y) and t1(UV x, y) = γ1(y) = t1(x, y)

t2(x, V Uy) = γ1(V Ux) ≤ γ2(y) = t2(x, y) and t2(UV x, y) = γ(y)2 = t2(x, y)

t3(x, V Uy) = γ3(V Ux) ≤ γ3(y) = t3(x, y) and t3(UV x, y) = γ3(y) = t3(x, y)

t4(x, V Uy) = γ4(V Ux) ≤ γ4(y) = t4(x, y) and t4(UV x, y) = γ4(y) = t4(x, y)

t1(x, y) + t2(x, y) + t3(x, y) + t4(x, y) = γ1(y) + γ2(y) + γ3(y) + γ4(y) < 1

Thus

ψb(db(Ux, V y))

≤ [ψb(db(x, y))]γ1 .[ψb(db(x, Ux)]γ2 .[ψb(db(y, V y)]γ3 .[ψb(db(x, V y) + db(y, Ux)]γ4

ψb(db(Ux, V y))

≤ [ψb(db(x, y))]t1(x,y).[ψb(db(x, Ux)]t2(x,y).[ψb(db(y, V y)]t3(x,y)
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.[ψb(db(x, V y) + db(y, Ux)]t4(x,y)

Then by Theorem 5.1.2 U and V have only one fixed point.

Replacing γ1(y), γ2(y), γ3(y) and γ4(y) by γ1, γ2, γ3 and γ4 respectively.

Corollary 5.1.8. Let (Y, db) be a complete b-metric space with coefficient b ≥

1 and U : Y → Y be a given self mappings. Whenever there are a mappings

γ1, γ2, γ3, γ4 ∈ N(U, V ) and there exist a function ψb ∈ Ψ
′

b satisfying:

(a) γ1(y) + γ2(y) + γ3(y) + γ3(y) + 2γ4(y) < 1

(b) ψb(db(Ux, Uy))

≤ [ψb(db(x, y))]γ1(x).[ψb(db(x, Ux)]γ2(x).[ψb(y, Uy)]γ3(x).[ψb(db(x, Uy)+db(y, Ux)]γ4(x)

for all x, y ∈ Y , then U and V have only one fixed point.

Corollary 5.1.9. Let (Y, db) be a complete b-metric space with co-efficient

with b ≥ 1 and V : Y → Y be a given mapping . Whenever there is a constant

γ ∈ [0, 1) and there exist a function ψb ∈ Ψ
′

b satisfying:

db(V x, V y) 6= 0 ⇒ ψb(db(V x, V y)) ≤ [ψb(db(x, y))]γ

for all x, y ∈ Y , then V has only one fixed point.

Taking γ1 = γ2 = γ3 = γ4 = γ in Corollary 5.1.8.

The main result by Ahmad et al. [3] can now be established as the following

Corollary of our result. Since for b = 1 the family ψb becomes the family ψ given

in [3].

Corollary 5.1.10. [3]“ Let (Y, d) be complete metric space and let S, T : X → X

be a given self mappings. If there exist mappings a1, a2, a3, a4 ∈ G(S, T ) and a

function ψ ∈ Ψ such that for all x, y ∈ X :

(a) a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) < 1
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(c) ψ(d(Sx, Ty))

≤ [ψ(d(x, y))]a1(x,y).[ψ(d(x, Sx)]a2(x,y).[ψ(d(y, Ty)]a3(x,y)

.[ψ(d(x, Ty) + d(y, Sx)]a4(x,y).

Then S and T have unique fixed point.”

Proof. The result follows from Theorem 5.1.2 by taking b = 1.

The results proved by Ahmad et al. [3] follows from above results by taking b = 1.

Now, we introduce an example which illustrate our result.

Example 5.1.11. Take a sequence

S∗1 = 1× 2

S∗2 = 1× 2 + 2× 3

S∗3 = 1× 2 + 2× 3 + 3× 4

S∗m = 1× 2 + 2× 3 + · · ·+m× (m+ 1) =
m(m+ 1)(m+ 2)

3

Let Y = {S∗m : m ∈ N} and db(x, y) = (x−y)2. Then (Y, db) is a complete b-metric

space with coefficient b = 2. Define the mapping V : Y → Y by,

V (S∗1) = S∗1 , V (S∗m) = S∗m−1, ∀ m ≥ 2

It is clear that the Banach contraction is not fulfilled. indeed, it is not difficult to

check.

lim
n→∞

db(V (S∗m), V (S∗1))

db(S∗m, S
∗
1)

= lim
n→∞

db(S
∗
m−1, S

∗
1)

db(S∗m, S
∗
1)

= lim
n→∞

((m− 1)m(m+ 1)− 6)2

(m(m+ 1)(m+ 2)− 6)2
= 1

Let us take a function ψ : (0,∞)→ (1,∞) defined by ψ(u) = e
√
ueu . We can show

ψ ∈ Ψ
′
. We shall prove that V fulfill the condition of the result 5.1.9 ,i.e

db(V (S∗m), (S∗n)) 6= 0 ⇒ e
√
db(V (S∗m),V (S∗n))e

db(V (S∗n),V (S∗m)) ≤ eα
√
db(S∗m,S

∗
n)e

db(S
∗
m,S
∗
n)
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for some α ∈ (0, 1). From above inequality, we have

db(V (S∗m), V (S∗n)) 6= 0 ⇒ db(V (S∗n), V (S∗m))edb(V (S∗m),V (S∗n))

db(S∗m, S
∗
n)edb(S∗m,S∗n)

≤ α2

We discuss two cases.

Case i: For 1 = m < n, we have

db(V (S∗m)− V (S∗n)) = (S∗n−1 − (S∗1))2 = (2× 3 + 3× 4 + · · ·+ (n− 1)n)2

and

d(S∗n, S
∗
1) = (S∗n − S∗1)2 = (2× 3 + 3× 4 + · · ·+ (n)(n+ 1))2

Thus

db(V (S∗m), V (S∗n))edb(V (S∗m),V (S∗n))

db(S∗m, S
∗
n)edb(S∗m,S∗n)

=
e(4×3+6×4+···+2n(n−1)+n(n+1))(−n(n+1))

(2n)2(2n− 1)2
≤ e−1

Case ii: For n > m > 1, we have

db(V (S∗m)− V (S∗n)) = ((2m− 1)2m+ (2m+ 1)(2m+ 1) + · · ·+ (2n− 3)(2n− 2))2

and

db(S
∗
n, S1) = ((2m+ 1)(2m+ 2) + (2m+ 3)(2m+ 4) + · · ·+ (2n− 1)(2n))2

Since m > n > 1, we have

db(V (S∗m), V (S∗n))edb(V (S∗m),V (S∗n))

db(S∗m, S
∗
n)edb(S∗m,S∗n)

=
(2m− 1)2(2m)2e((2m−1)2m+2(2m+1)(2m+2)+···+2(2n−2)(2n−1)+2n(2n−1))((2m−1)2m−(2n−1)2n)

(2n)2(2n− 1)2

≤e−1

It fulfill all conditions of the Theorem 5.1.9, this implies that S∗1 is only the fixed

point of V .
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5.2 Conclusion

We have introduced JS-contraction, modified JS-contraction and generalized mod-

ified JS-contraction in b-metric spaces and established and proved fixed point and

commom fixed point results for all these contraction in the setting of complete

b-metric space. We have provided examples which support our result. We have

extended the results of Jleli and Samet[22], Hussain et al.[20] and Ahmad et al.[3]

in the setup of complete b-metric space. The results proved in this thesis may

helpful for solving fixed point problem in b-metric space.
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